728x90
반응형
Code
! pip install timm
import warnings
warnings.filterwarnings('ignore')
from glob import glob
import pandas as pd
import numpy as np
from tqdm import tqdm
import cv2
import gc
import os
import timm
import random
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torchvision.transforms as transforms
from sklearn.metrics import f1_score, accuracy_score
import time
from sklearn.model_selection import StratifiedKFold
import warnings
from glob import glob
import pandas as pd
import numpy as np
from tqdm import tqdm
device = torch.device('cuda')
warnings.filterwarnings('ignore')
path = '/home/'
train_png = sorted(glob(path + 'open/train/*.png'))
test_png = sorted(glob(path + 'open/test/*.png'))
train_y = pd.read_csv(path +"open/train_df.csv")
train_labels = train_y["label"]
label_unique = sorted(np.unique(train_labels))
label_unique = {key:value for key,value in zip(label_unique, range(len(label_unique)))}
train_labels = [label_unique[k] for k in train_labels]
def img_load(path):
img = cv2.imread(path)[:,:,::-1]
img = cv2.resize(img, (384, 384),interpolation = cv2.INTER_AREA)
return img
train_imgs = [img_load(m) for m in tqdm(train_png)]
test_imgs = [img_load(n) for n in tqdm(test_png)]
np.save(path + 'train_imgs_384', np.array(train_imgs))
np.save(path + 'test_imgs_384', np.array(test_imgs))
train_imgs = np.load(path + 'train_imgs_384.npy')
test_imgs = np.load(path + 'test_imgs_384.npy')
meanRGB = [np.mean(x, axis=(0,1)) for x in train_imgs]
stdRGB = [np.std(x, axis=(0,1)) for x in train_imgs]
meanR = np.mean([m[0] for m in meanRGB])/255
meanG = np.mean([m[1] for m in meanRGB])/255
meanB = np.mean([m[2] for m in meanRGB])/255
stdR = np.mean([s[0] for s in stdRGB])/255
stdG = np.mean([s[1] for s in stdRGB])/255
stdB = np.mean([s[2] for s in stdRGB])/255
print("train 평균",meanR, meanG, meanB)
print("train 표준편차",stdR, stdG, stdB)
meanRGB = [np.mean(x, axis=(0,1)) for x in test_imgs]
stdRGB = [np.std(x, axis=(0,1)) for x in test_imgs]
meanR = np.mean([m[0] for m in meanRGB])/255
meanG = np.mean([m[1] for m in meanRGB])/255
meanB = np.mean([m[2] for m in meanRGB])/255
stdR = np.mean([s[0] for s in stdRGB])/255
stdG = np.mean([s[1] for s in stdRGB])/255
stdB = np.mean([s[2] for s in stdRGB])/255
print("test 평균",meanR, meanG, meanB)
print("test 표준편차",stdR, stdG, stdB)
class Custom_dataset(Dataset):
def __init__(self, img_paths, labels, mode='train'):
self.img_paths = img_paths
self.labels = labels
self.mode=mode
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img = self.img_paths[idx]
if self.mode == 'train':
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean = [0.433038, 0.403458, 0.394151],
std = [0.181572, 0.174035, 0.163234]),
transforms.RandomAffine((-45, 45)),
])
img = train_transform(img)
if self.mode == 'test':
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean = [0.418256, 0.393101, 0.386632],
std = [0.195055, 0.190053, 0.185323])
])
img = test_transform(img)
label = self.labels[idx]
return img, label
class Network(nn.Module):
def __init__(self,mode = 'train'):
super(Network, self).__init__()
self.mode = mode
if self.mode == 'train':
self.model = timm.create_model('efficientnet_b4', pretrained=True, num_classes=88, drop_path_rate = 0.2)
if self.mode == 'test':
self.model = timm.create_model('efficientnet_b4', pretrained=True, num_classes=88, drop_path_rate = 0)
def forward(self, x):
x = self.model(x)
return x
def score_function(real, pred):
score = f1_score(real, pred, average="macro")
return score
def main(seed = 2022):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
main(2022)
cv = StratifiedKFold(n_splits = 5, random_state = 2022,shuffle=True)
batch_size = 26
epochs = 100
pred_ensemble = []
for idx, (train_idx, val_idx) in enumerate(cv.split(train_imgs, np.array(train_labels))):
print("----------fold_{} start!----------".format(idx))
t_imgs, val_imgs = train_imgs[train_idx], train_imgs[val_idx]
t_labels, val_labels = np.array(train_labels)[train_idx], np.array(train_labels)[val_idx]
# Train
train_dataset = Custom_dataset(np.array(t_imgs), np.array(t_labels), mode='train')
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
# Val
val_dataset = Custom_dataset(np.array(val_imgs), np.array(val_labels), mode='test')
val_loader = DataLoader(val_dataset, shuffle=True, batch_size=batch_size)
gc.collect()
torch.cuda.empty_cache()
best=0
model = Network().to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-4, weight_decay = 2e-2)
criterion = nn.CrossEntropyLoss()
scaler = torch.cuda.amp.GradScaler()
best_f1 = 0
early_stopping = 0
for epoch in range(epochs):
start=time.time()
train_loss = 0
train_pred=[]
train_y=[]
model.train()
for batch in (train_loader):
optimizer.zero_grad()
x = torch.tensor(batch[0], dtype=torch.float32, device=device)
y = torch.tensor(batch[1], dtype=torch.long, device=device)
with torch.cuda.amp.autocast():
pred = model(x)
loss = criterion(pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
train_loss += loss.item()/len(train_loader)
train_pred += pred.argmax(1).detach().cpu().numpy().tolist()
train_y += y.detach().cpu().numpy().tolist()
train_f1 = score_function(train_y, train_pred)
state_dict= model.state_dict()
model.eval()
with torch.no_grad():
val_loss = 0
val_pred = []
val_y = []
for batch in (val_loader):
x_val = torch.tensor(batch[0], dtype = torch.float32, device = device)
y_val = torch.tensor(batch[1], dtype=torch.long, device=device)
with torch.cuda.amp.autocast():
pred_val = model(x_val)
loss_val = criterion(pred_val, y_val)
val_loss += loss_val.item()/len(val_loader)
val_pred += pred_val.argmax(1).detach().cpu().numpy().tolist()
val_y += y_val.detach().cpu().numpy().tolist()
val_f1 = score_function(val_y, val_pred)
if val_f1 > best_f1:
best_epoch = epoch
best_loss = val_loss
best_f1 = val_f1
early_stopping = 0
torch.save({'epoch':epoch,
'state_dict':state_dict,
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
}, path +'best_model_{}.pth'.format(idx))
print('-----------------SAVE:{} epoch----------------'.format(best_epoch+1))
else:
early_stopping += 1
# Early Stopping
if early_stopping == 20:
TIME = time.time() - start
print(f'epoch : {epoch+1}/{epochs} time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s')
print(f'TRAIN loss : {train_loss:.5f} f1 : {train_f1:.5f}')
print(f'Val loss : {val_loss:.5f} f1 : {val_f1:.5f}')
break
TIME = time.time() - start
print(f'epoch : {epoch+1}/{epochs} time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s')
print(f'TRAIN loss : {train_loss:.5f} f1 : {train_f1:.5f}')
print(f'Val loss : {val_loss:.5f} f1 : {val_f1:.5f}')
pred_ensemble = []
batch_size = 32
# Test
test_dataset = Custom_dataset(np.array(test_imgs), np.array(["tmp"]*len(test_imgs)), mode='test')
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
for i in range(5):
model_test = Network(mode = 'test').to(device)
model_test.load_state_dict(torch.load((path+'best_model_{}.pth'.format(i)))['state_dict'])
model_test.eval()
pred_prob = []
with torch.no_grad():
for batch in (test_loader):
x = torch.tensor(batch[0], dtype = torch.float32, device = device)
with torch.cuda.amp.autocast():
pred = model_test(x)
pred_prob.extend(pred.detach().cpu().numpy())
pred_ensemble.append(pred_prob)
len(pred_ensemble)
pred = (np.array(pred_ensemble[0])+ np.array(pred_ensemble[1])+ np.array(pred_ensemble[3]) + np.array(pred_ensemble[4]) )/4
f_pred = np.array(pred).argmax(1).tolist()
label_decoder = {val:key for key, val in label_unique.items()}
f_result = [label_decoder[result] for result in f_pred]
submission = pd.read_csv(path + "open/sample_submission.csv")
submission["label"] = f_result
submission.to_csv(path + "b3_norm_epoch70_4_2.csv", index = False)
사전 학습 모델의 성능 파악을 할 때 Fold 학습은 실행 시간이 오래걸려서 fold를 나누지 않은 데이터에 대해서 학습을 진행하고 성능을 비교하였습니다.
batch_size = 32
epochs = 30
# Train
train_dataset = Custom_dataset(np.array(train_imgs), np.array(train_labels), mode='train')
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
# Test
test_dataset = Custom_dataset(np.array(test_imgs), np.array(["tmp"]*len(test_imgs)), mode='test')
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
gc.collect()
torch.cuda.empty_cache()
def score_function(real, pred):
score = f1_score(real, pred, average="macro")
return score
model = Network().to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay = 1e-3)
criterion = nn.CrossEntropyLoss()
scaler = torch.cuda.amp.GradScaler()
def score_function(real, pred):
score = f1_score(real, pred, average="macro")
return score
model = Network().to(device)
best=0
for epoch in range(epochs):
start=time.time()
train_loss = 0
train_pred=[]
train_y=[]
model.train()
for batch in (train_loader):
optimizer.zero_grad()
x = torch.tensor(batch[0], dtype=torch.float32, device=device)
y = torch.tensor(batch[1], dtype=torch.long, device=device)
with torch.cuda.amp.autocast():
pred = model(x)
loss = criterion(pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
train_loss += loss.item()/len(train_loader)
train_pred += pred.argmax(1).detach().cpu().numpy().tolist()
train_y += y.detach().cpu().numpy().tolist()
train_f1 = score_function(train_y, train_pred)
TIME = time.time() - start
print(f'epoch : {epoch+1}/{epochs} time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s')
print(f'TRAIN loss : {train_loss:.5f} f1 : {train_f1:.5f}')
model.eval()
f_pred = []
pred_prob = []
with torch.no_grad():
for batch in (test_loader):
x = torch.tensor(batch[0], dtype = torch.float32, device = device)
with torch.cuda.amp.autocast():
pred = model(x)
pred_prob.extend(pred.detach().cpu().numpy())
f_pred.extend(pred.argmax(1).detach().cpu().numpy().tolist())
label_decoder = {val:key for key, val in label_unique.items()}
f_result = [label_decoder[result] for result in f_pred]
submission = pd.read_csv(path + "open/sample_submission.csv")
submission["label"] = f_result
submission.to_csv(path + " b3_norm.csv", index = False)
Result
https://dacon.io/competitions/official/235894/overview/description
728x90
반응형
'Competition' 카테고리의 다른 글
데이콘 Basic 서울 랜드마크 이미지 분류 경진대회 (3등 / 420명, Top 0.71%) (0) | 2024.03.30 |
---|---|
데이콘 Basic 수화 이미지 분류 경진대회 (8등 / 418명, Top 1.91%) (0) | 2024.03.30 |
2021 Ego-Vision 손동작 인식 AI 경진대회 (Private 5위, Public점수 : 0.16419, DenseNet161, Top 1.72%) (0) | 2024.03.30 |