반응형
Code
import cv2, torch, os, timm, time, warnings, gc, zipfile, telegram, sys, argparse, tqdm, matplotlib.pyplot, torchvision.transforms, pandas, numpy
from tqdm import tqdm
from torchsummary import summary
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score
import pandas as pd
import os
from glob import glob
device = torch.device('cuda:0')
warnings.filterwarnings('ignore')
fantasy_zip = zipfile.ZipFile('./seoul_dataset.zip')
fantasy_zip.extractall('./seoul_dataset')
fantasy_zip.close()
label_df = pd.read_csv('./seoul_dataset/train.csv')
def get_train_data(data_dir):
img_path_list = []
label_list = []
img_path_list.extend(glob(os.path.join(data_dir, '*.PNG')))
img_path_list.sort(key=lambda x:int(x.split('/')[-1].split('.')[0]))
label_list.extend(label_df['label'])
return img_path_list, label_list
def get_test_data(data_dir):
img_path_list = []
img_path_list.extend(glob(os.path.join(data_dir, '*.PNG')))
img_path_list.sort(key=lambda x:int(x.split('/')[-1].split('.')[0]))
#print(img_path_list)
return img_path_list
train_path, train_label = get_train_data('./seoul_dataset/train')
test_path = get_test_data('./seoul_dataset/test')
train_label_info = {label:i for i, label in enumerate(sorted(set(train_label)))}
label_unique = sorted(numpy.unique(train_label))
label_unique = {key:value for key,value in zip(label_unique, range(len(label_unique)))}
train_labels = [label_unique[k] for k in train_label]
data_dir = './seoul_dataset/'
def img_load(path):
img = cv2.imread(path)[:,:,::-1]
return img
train_imgs = [img_load(m) for m in tqdm(train_path)]
test_imgs = [img_load(i) for i in tqdm(test_path)]
numpy.save(data_dir + 'train_imgs', numpy.array(train_imgs))
numpy.save(data_dir + 'test_imgs', numpy.array(test_imgs))
train_imgs = numpy.load(data_dir + 'train_imgs.npy')
test_imgs = numpy.load(data_dir + 'test_imgs.npy')
def f1_score_function(real, pred):
score = accuracy_score(real, pred)
return score
class Custom_dataset(Dataset):
def __init__(self, img_paths, labels, mode='train'):
self.img_paths = img_paths
self.labels = labels
self.mode = mode
def __len__(self):
return len(self.img_paths)
def __getitem__(self, idx):
img = self.img_paths[idx]
if self.mode == 'train':
train_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((224,224)),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
img = train_transform(img)
if self.mode == 'test':
test_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((224,224)),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
img = test_transform(img)
label = self.labels[idx]
return img, label
class Network(torch.nn.Module):
def __init__(self, mode = 'train'):
super(Network, self).__init__()
self.mode = mode
if self.mode == 'train':
self.model = timm.create_model(model_name, pretrained = True, num_classes = 10)
if self.mode == 'test':
self.model = timm.create_model(model_name, pretrained = True, num_classes = 10)
def forward(self, x):
x = self.model(x)
return x
batch_size = 128
epochs = 100
model_name = "densenet121"
cv = StratifiedKFold(n_splits = 5, random_state = 2022, shuffle = True)
pred_ensemble = []
for idx, (train_idx, val_idx) in enumerate(cv.split(train_imgs, numpy.array(train_labels))):
print("-----------------fold_{} start!----------------".format(idx))
t_imgs, val_imgs = train_imgs[train_idx], train_imgs[val_idx]
t_labels, val_labels = numpy.array(train_labels)[train_idx], numpy.array(train_labels)[val_idx]
train_dataset = Custom_dataset(numpy.array(t_imgs), numpy.array(t_labels), mode = 'train')
train_loader = DataLoader(train_dataset, shuffle = True, batch_size = batch_size)
val_dataset = Custom_dataset(numpy.array(val_imgs), numpy.array(val_labels), mode = 'test')
val_loader = DataLoader(val_dataset, shuffle = True, batch_size = batch_size)
gc.collect()
torch.cuda.empty_cache()
best = 0
model = Network().to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr = 1e-4, weight_decay = 1e-3)
criterion = torch.nn.CrossEntropyLoss()
scaler = torch.cuda.amp.GradScaler()
best_f1 = 0
early_stopping = 0
for epoch in range(epochs):
start = time.time()
train_loss = 0
train_pred = []
train_y = []
model.train()
for batch in (train_loader):
optimizer.zero_grad()
x = torch.tensor(batch[0], dtype=torch.float32, device=device)
y = torch.tensor(batch[1], dtype=torch.long, device=device)
with torch.cuda.amp.autocast():
pred = model(x)
loss = criterion(pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
train_loss += loss.item()/len(train_loader)
train_pred += pred.argmax(1).detach().cpu().numpy().tolist()
train_y += y.detach().cpu().numpy().tolist()
train_f1 = f1_score_function(train_y, train_pred)
state_dict = model.state_dict()
model.eval()
with torch.no_grad():
val_loss = 0
val_pred = []
val_y = []
for batch in (val_loader):
x_val = torch.tensor(batch[0], dtype = torch.float32, device = device)
y_val = torch.tensor(batch[1], dtype = torch.long, device = device)
with torch.cuda.amp.autocast():
pred_val = model(x_val)
loss_val = criterion(pred_val, y_val)
val_loss += loss_val.item()/len(val_loader)
val_pred += pred_val.argmax(1).detach().cpu().numpy().tolist()
val_y += y_val.detach().cpu().numpy().tolist()
val_f1 = f1_score_function(val_y, val_pred)
if val_f1 > best_f1:
best_epoch = epoch
best_loss = val_loss
best_f1 = val_f1
early_stopping = 0
torch.save({'epoch':epoch,
'state_dict':state_dict,
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
}, data_dir + model_name +'-best_model_{}.pth'.format(idx))
print('-----------------SAVE:{} epoch----------------'.format(best_epoch+1))
else:
early_stopping += 1
# Early Stopping
if early_stopping == 20:
TIME = time.time() - start
print(f'Epoch : {epoch+1}/{epochs}, time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s, Train loss : {train_loss:.5f}, f1 : {train_f1:.5f}, Val loss : {val_loss:.5f}, f1 : {val_f1:.5f}')
print("Early stopping")
break
TIME = time.time() - start
print(f'Epoch : {epoch+1}/{epochs}, time : {TIME:.0f}s/{TIME*(epochs-epoch-1):.0f}s, Train loss : {train_loss:.5f}, f1 : {train_f1:.5f}, Val loss : {val_loss:.5f}, f1 : {val_f1:.5f}')
pred_ensemble = []
test_dataset = Custom_dataset(numpy.array(test_imgs), numpy.array(["tmp"]*len(test_imgs)), mode = 'test')
test_loader = DataLoader(test_dataset, shuffle = False, batch_size = batch_size)
for i in range(5):
model_test = Network(mode = 'test').to(device)
model_test.load_state_dict(torch.load((data_dir+ model_name +'-best_model_{}.pth'.format(i)))['state_dict'])
model_test.eval()
pred_prob = []
with torch.no_grad():
for batch in (test_loader):
x = torch.tensor(batch[0], dtype = torch.float32, device = device)
with torch.cuda.amp.autocast():
pred = model_test(x)
pred_prob.extend(pred.detach().cpu().numpy())
pred_ensemble.append(pred_prob)
pred = (numpy.array(pred_ensemble[0]) + numpy.array(pred_ensemble[1]) + numpy.array(pred_ensemble[2]) + numpy.array(pred_ensemble[3]) + numpy.array(pred_ensemble[4]))/5
f_pred = numpy.array(pred).argmax(1).tolist()
label_decoder = {val:key for key, val in label_unique.items()}
f_result = [label_decoder[result] for result in f_pred]
submission = pd.read_csv('./seoul_dataset/sample_submission.csv')
submission['label'] = f_result
submission.to_csv('./seoul_dataset/submit.csv', index=False)
Result

https://dacon.io/competitions/official/235957/overview/description
서울 랜드마크 이미지 분류 AI 해커톤 - DACON
분석시각화 대회 코드 공유 게시물은 내용 확인 후 좋아요(투표) 가능합니다.
dacon.io
https://dacon.io/codeshare/6483
ideal9, Private 3위, Private 점수 : 1, 5-fold, ensemble
서울 랜드마크 이미지 분류 AI 해커톤
dacon.io
'Competition' 카테고리의 다른 글
데이콘 Basic 수화 이미지 분류 경진대회 (8등 / 418명, Top 1.91%) (0) | 2024.03.30 |
---|---|
월간 데이콘 컴퓨터비전 이상치 탐지 알고리즘 경진대회 (28등 / 481팀, Top 5.82%) (0) | 2024.03.30 |
2021 Ego-Vision 손동작 인식 AI 경진대회 (Private 5위, Public점수 : 0.16419, DenseNet161, Top 1.72%) (0) | 2024.03.30 |